净现金流量现值(Net Present Value,NPV)是资本财务管理等领域研究中非常重要的指标。它是衡量资本投资的折现现值,是将一系列不同时期的现金流量折现至同一时点的财务工具,用于评估一个资本投资项目的综合收益。
那么,如何计算净现金流量现值呢?首先,要了解净现金流量现值的算法:如果一系列未来的净现金流量 Ci (i=1,...,n) 都是已知的,那么这系列净现金流量的现值为:
NPV=C1/(1+r)^1+C2/(1+r)^2+...+Cn/(1+r)^n
其中 r 为给定的折现率,折现率的值必须满足廉价原则,即选择大于或等于机会成本(opportunity cost)的折现率,如果用 r 替换上述的折现率,那么净现金流量现值 NPV 的计算格式就变成:
NPV=C1/(1+r)^1+C2/(1+r)^2+...+Cn/(1+r)^n
容易看出,净现金流量现值的计算非常简单,就是将净现金流量按照给定的折现率折现,最后求和就可以了。
拓展知识:数学原理上,净现金流量现值就是一个简单的加权累积和,我们把各个折现期内的现金流量 Ci (i=1,...,n) 用权重WI=(1+r)^-i 折现,就能把多期未来的现金流量折回到现时点,最后求和就得到了净现金流量现值。而权重WI 的计算没有太大技巧,公式 WI=(1+r)^-i 中 r 是资本成本率,就是合理的折现率,折现率的取值范围一般都比机会成本(opportunity cost)稍微大一点,以确保资本投资不出现收益率小于机会成本的情况。